
I- UNCLASSIFIED

275 312
[l&pyiaduced

Im im

ARMED SERVICES TECHNICAL INE0RMAT10N AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings., speci-
fications or other data az^e used for any purpose
other than in connection with a definitely related
government procurement operation^ the U. S.
Govemment thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govem-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.

—V—

SUMMARY

In this Memorandum the authors initiate the application

of the simple yet powerful computational technique of

polynomial approximation to problems in dynamic programming.

The theoretical applicability of orthogonal polynomials

is first discussed and then applied to one— and two—dimensional

allocation problems. Numerical results obtained from FORTRAN

programs Involving Legendre polynomials are presented.

-VI1-

CONTENTS

PREFACE iii

SUMMARY v

Section
1. INTRODUCTION 1

2. POLYNOMIAL APPROXIMATION 3

3.. APPLICATION TO DYNAMIC PROGRAMMING 6

1I, THE LEGENDRE POLYNOMIALS. 7

5. EXAMPLES 8

a. Time Estimates 9
b. Numerical Results 9

6. TWO-DIMENSIONAL APPROXIMATION . II

7. EXAMPLES 13

a. Time Estimate . 13
b. Numerical Results 13

8. DISCUSSION 14

Appendix
A. FORTRAN PROGRAM — ONE-DIMENSIONAL ALLOCATION

PROBLEM . 19

B. EORTRAN PROGRAM — TWO-DIMENSIONAL ALLOCATION
PROBLEM. 19

REFERENCES 2-

POLYNOMIAL APPROXIMATION—A NEW COMPUTATIONAL TECHNIQUE
IN DYNAMIC PROGRAMMING—I: ALLOCATION PROCESSES

1. INTRODUCTION

The problem of maximizing the function

(1.1) F(xrx2,x^) = g1(x1) + S?(x?) + ••• + bNUN)

over the domain

(1.2) x1 + x2 + ••• -i- x - x, x1 > 0

can be reduced via familiar dynamic programming techniques

(see [l]) to that of determining the sequence of functions

[f (x)! generated by means of the recurrence relation

(1.3) i^U) = g^x)

fn+1(x) = max [gn+1(y) + fn(x - y)
0<y<x

The problem can thus oe solved numerically in a very simple

fashion^ regardless of the complexity of the functions g.(x).

A number of important allocation processes can be resolved in

this way. 11' we consider cases in which two distinct types of

resources must be allocated^ we face the problem of maximizing

the function

1-4) F(xrx, , ...)xN;y1)y2, . ..^y^

= 51(xry1) + g2(x2,y2) + ••• + sN(xN,yN)

-2-

over the domain

(1.5) x, + xp + ••• + x = x, x. 2 0^ N

y1 + y2 + ••• + yN = y, yi > 0.

Theoretically, there is no difficulty in applying the same

techniques.

The maximization problem can be reduced to the deter-

mination of the sequence (f (x,y)] generated by means of

the recurrence relation

(1-6) fn+l^X,y) = max tsn+1(w,r) + fn(7v - w,y - r)]
0<w<x
0<r<y

In principlej this equation can be solved computationally

using the same technique that applies so well to (1.3). In

practice (see [l] for a discussion), questions of time and

accuracy arise. There are a number of ways of circumventing

these difficulties, among which the Lagrange multiplier plays

a significant role.

In this series of papers, we wish to present a number of

applications of a new, simple and quite powerful method, that

of polynomial approximation. We shall begin with a discussion

of the allocation process posed in the foregoing paragraphs

and continue, in subsequent papers, with a treatment of

realistic trajectory and guidance processes. In a separate

series of papers we shall apply this fundamental attack upon

-5-

dirnensionality to the solution of a number of the equations

of mathematical physics.

We would like to express our appreciation to Oliver Gross

for the analytic solution of some test problems we used to

check the accuracy of our techniques^ and for his general

interest In the program.

POLYNOMIAL APPROXIMATION

In the systematic study of dynamic programming as a

computational algorithm given in [l],a function f(x) is

considered to be a table of values at an appropriate set of

grid points:

(2.1) X f(x)

0 fo
A fl

2A r2

KA f.K

In this way, the function f(x) is stored in the computer.

For functions of one variable with K = 100 or 1000, this

is a reasonably convenient way to proceed. For functions of

two variables, this procedure becomes a bit inconvenient since

(K + 1) values for x combined with (K + l) values for y

yields a total set of (K + l) values. Consequently, when

we encounter functions of three or more variables, we must

_4.

balance accuracy against time and the limited storage of

contemporary computers in our choice of K.

The storage of functional values by means of a table of

values is ideally suited to the treatment of problems involving

functions of quite arbitrary form. It is, on the other hand,

quite wasteful and inefficient if we are dealing with functions

possessing a definite structure, which is to say, situations

in which there is a high correlation between the values of

f(rA) and f(sA). Since functions of this type occur in

many important applications, and throughout mathematical

physics, it is worthwhile to develop methods which take

advantage of the "smoothness" of the function.

One such method is polynomial approximation, or to be

precise, generalized polynomial approximation. We represent

the function in the form

M
(2.2) f(x) = Z a cp, (x),

k=l K K

where the qv(^) are known elementary functions such as x ,
H.

sin kx, P. (x) (the Legendre polynomial of degree k) or

T, (x) (the Cebycev polynomial of degree k), and then store

the function for all values of interest by means of the ßct

of K coefficients [a-, , ap, . . ., aM].

It is important to point out that (2.2) is particularly

useful in automatically furnishing the interpolation—values

frequently needed in dynamic programming calculations. If

-b-

one uses a. table of values of the form shown in (2.1),

interpolation is frequently a source of difficulty.

To determine the coefficients a, it is convenient to

make the ^^(x) be an orthonormal set. Then

(2.3) ak = J f(x)(pk(x)dxJ

assuming for the purposes of convenience that 0 <^ x. < 1. We

can, of course, use a Cebycev fit instead, and we will explore

this in subsequent papers. A priori, we would suspect that it

would be more efficient to use a mean—square fit (implied by

(2.3)), and take M to be larger, than to go to the trouble

of determining the a, to minimize the function

M
[2 A) max if(x) - Z a,cp, (x) |,

0<x<l k=l K K

which for a fixed M may be expected to yield a more accurate

approximation. Alternatively, one could use an approximation

by polygonal functions [l].

To evaluate the a, without requiring a knowledge of too

many values of f(x), we use a quadrature technique

R
(2.5) ak = 1 wif(x1)cpk(x1)

1=1

where the weights w, and the quadrature points x. are

chosen so that the equation

1 R
(2.6) / g(x)dx = 2 w g(x)

is exact for polynomials in x of degree (2R — 1) or less.

This requirement narrows us down to the Gauss quadrature

technique [2], If we use generalized polynomials

(expressions such as (2.6)), we will obtain different weights

and quadrature points.

We may then store the function f(x) for 0 < x < 1

by storing the coefficients a, or the particular values

f(x.) which enable us to compute the a, .

;. APPLICATION TO DYNAMIC PROGRAMING

Consider now the application of these ideas to the

computational solution of the functional equations of dynamic

programming. Suppose that we wish to compute the sequence

[f (x)] determined by

(5.1) fN(x) = max [gN(y) + f^U - y)],,
0^y<x

N > 2,, given that f-|(x) = g,(x). To avoid the tabulation of

each of the functions fM(^) at the x—grid [0,A,...,KAh

where K may be a large number, we approximate to each

function fM(
x) ^n the manner indicated above. Starting

with f-,(x), we store the values f^x.), i = 1,2,...,R,

needed to evaluate f-,(x — y) in the formula determining fp(x),

(5.2) f?(x) = max [gjj) + f^x-y)].
0<y<x ^ ^

We then determine successively f0(x-,), fn{x^),..., r„(x),

a set of values which stores the function iV,(x). This

process is then repeated.

Although the calculation of f _->(* - y) using (2.2)

is fan more time—consuming than taking a value from storagej

we expect to gain time over—all because of the fact that we

are required to calculate only a few values, f (x.),

1 = 1,2,....,R, at each stage.

4. THE LEGENDRE POLYNOMIALS

Since in allocation processes we have a range [0,x]

which stays constant as the process continues from stage to

stagey we can normalize a-.rl consider the basic interval to

be [Ojl]. Since the interval is finite and we want, at the

moment, a polynomial approximation, we shall employ Legendre

polynomials.

Let f ..(x) denote the standard Legendre polynomial,

defined over [- 1,1], and let cp,(x) be defined by the

relation

(4.1) cp, (x) = (2k + l)1//^Pk(2x - i;

The sequence is then orthonormal over [0,1], i.e.,

{k.2) J cpk(x)cp.(x)dx = 0^

0

From the standard recurrence relations for p, (x), we obtain

the relation

-8-

4.3) -P^x) = I, qUx) = 31/2(2x - 1),

?1+2(x) I2i±-1
(i+T

iA
(21 + l)1/2(2x - l)qp1+1(x)

. q, (x)
,21 - l)1/<:

This relation makes the evaluation of the sequence of values

of (P1 (x) for any x a relatively simple matter.

3- EXAMPLES

In order to experiment with this new approximating

procedure, we devised a FORTRAN program for the I3M-7090

whereby at each stage., after obtaining the new coefficients

a, ^ , we computed f,(x) from {2.2) for a succession of

as many values of x as desired, and printed the result after

each computation. We used two modes of output, either a list

of numerical values, [x,f,(x)], or a graphical plot (done

directly by the 7090) of x versus r.(x).

We experimented with several types of functions g^x)

for which the results could be derived from analytic

considerations. Using the known analytic results as a

checkpoint, we varied the parameters R, M.< and the grid size

H, in order to determine the degree of accuracy we might

expect in general. V/e found remarkably good agreement to 2

Oliver Gross was of considerable assistance to us in
this respect.

-9~

or more significant figures with a relatively low order of

approximation, namely R = 5, M = b. This is encouraging

from the point of view of extending the method in the experi-

mental investigations of higher—dimensional allocation

processes where, as pointed out above, time and storage

aspects become significant. We also incorporated in our

program restraints of the form 0 < ^ < ^ < b, < x, since

constraints of this nature often occur in applications.

a. Time Estimates

Following are some estimates of the execution time

required on the 7090:

1. 10 seconds for 4 stages, R = 3, M = 6 and a grid

of O.OD both for the search and output listing.

2. 3 minutes for a total of 4 cases of 10 stages each;

R = 3, M = 4; R = 9, M = 6; R = 7, M = 8; R - 10, M = 11.

The grid in the search for the maximum is 0.01 and the output

listing is given for every x along the grid.

3. 3 minutes for the total of 4 cases mentioned above,

10 stages per case and a grid of 0.01 for the search. The

output is a graph where the independent variable x is

listed at intervals of 0.023.

b. Numerical Results

■1
1 '? (x) = i(x) ''r . Using the Schwarz inequality, we

^eadily obtain the values

fN(x) » (f(N -f 1)(2N + Ijx)1^.

-12-

can be readily handled by the methods described in Sees. 2

and 5.

The dynamic programming recurrence relation is:

fNU>y) = max
R VVV + fN-l(x ~ XN'y ~ y N'

where R is determined by a,, < x,. < minfxjb,.),
N — N — v N

c < yM < mi
n(y>d). Let x., i = 1,...,R, be the roots

'N

of the normalized Legendre polynomial ^ (x), and let [y)

be a duplicate set of these quadrature points. Each function

f (x,y) is expressed approximately by the relation

M M
(6.3) fv(x,y) = 2 Z (N)

r-1 s=l
r.s tM tiiy).

where the coefficients, using the quadrature method, are

given by

R R
(6.4) (N) _

k,s = if1 ^
wiwJ fN(Xi^j) 4(Xi >yJ-

As in the one—dimensional case, we start with the known

values f (x,y) =» g1(x1,y1), x1 - x, y1 = y. In stage n

we store the values f (x ,y), for i,j =»]J2,...,M, and

then compute and store the values a« Q in the storage r, s

allotted to the previous stage. The latter coefficients are

utilized in the computation of f (x — x -.,y - y -,) to K nv n+1 ^ Jn+1/

obtain the values of f .-1(^^.1) ln the next stage.

-1>

7■ EXAMPLES

a. Time Estimate

The execution time required on the 7090 was 2 minute? for

•'-I stages, with R = ^ r^ = t, a grid of H - 0.0'j in the two-

dimensional search, and an output listing of 3 test values of

f(x,y) in each stage.

b. Numerical Results

1. gi(x,y) = (21 - l)1/2(xy)1/J+. Using the Holder

inequality, we readily obtain the exact values f (x,y) = n(xy

*n(x,y) - {c'n-l)x/n', yn(x,y) = (2n-l)y/n'. Our results for

R = ^ M ^ b, and a grid of 0.03 in the search are;

a/4

Function Exact Computed

f2(.5,.5) 1.40 1.40

0O75 0-3:) (to the neare

V1'1) 4.00 3-91

Here again the agreement was poor at the origin, presumably

because of the singular behavior of (xy) at x = 0, y = 0.

To confirm this hypothesis, we considered the next case.

2- g..(x,y) - (x + iy)/(l + x + iy). This case, as well

as the theoretical values, was suggested by 0. A. Gross, and

he determined the exact values.

-14-

Function Exact Computed

f2(i,o)

1.17

O.667

1.17

0.6^7

8. DISCUSSION

As can be seen, the agreement in general is quite satis-

factory. We can obtain reasonably accurate values of the

maximum return and of the optimal allocation policy using

small amounts of machine time.

Combining these techniques with the method of the

Lagrange multiplier^ we can expect to solve three-and four-

dimensional resource allocation problems. Extending the

method to cover the approximation of functions of 3) ^s 5 and

6 variables, we can treat Hitchcock—Koopmans allocation-

processes of quite high dimension.

Finally, if we combine these techniques—polynomial

approximations and Lagrange multipliers—with that of

successive approximations, there should be very few

allocation processes which still resist our efforts.

--18-

ICC3

77

7fi
76

1C04

1CC5

7 72
71

IC06

Z(I5)=H0LBL
DG 1004 L5=lfL2
IFI19-11*15-1)76,77,76
DO 78 16 = 1, 110
ZlI6)=H0LD0T
CONTINUE
CCNTINUfc
CONTINUE
DC 1005 15=1,110,10
Z|I5)=HCLC0T
Z(N5)=HCLAST
OUTPUT 42, 1006,Y, (Z(17)
CONTINUE
CONTINUE
RETURN
FORMAT! 1H FIG.3, 1C9A1)
FNC

17=1., 105)

REFERENCES

Bellman, R., and 3. Dreyfus, Applied Dynaml
The RAND Corporation, Report R-3^2, *-- --

c Frosraimnir.j;;,
appear; also to The RAND Corporation, Report R-yj'^, to appear; a

be published by Princeton University Press, Princetor
New Jersey.

Bellman, R., R, Kalaba, and M. Prestrud, "On a New
Computational Solution of Time-dependent Transport
Processes—I: One—dimensional Case," Proc. Nat. Acad
Sei. USA, Vol. 47, 1961. pp. 1072-107^

